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We consider a theoretical method for the calculation of temperature fields in silicon films during a pulsed 
optical anneal. 

In recent years, together with works on laser annealing, papers have appeared which were devoted to the pulsed 
optical annealing of radiation defects and impurity activation in ion-implanted layers of semiconductor films, in the process 
of formation of  active elements [ 1-4]. Having the same merits as the laser anneal, the pulsed optical anneal has a number of  
advantages: a relative simplicity of the method, sufficiently high reproducibility of the process, no redistribution of the 
implanted impurity during the anneal, absence of negative side effects, etc. 

To discuss the regimes of the pulsed optical anneal, it is necessary to know with a sufficient accuracy the tempera- 
ture on the surface of the silicon film, and the temperature profile along its thickness. Since there are no devices at present 
which can measure temperature of small objects during the time of  the order of 10 msec, it is impossible to obtain 
this information experimentally. Calculation using the simplified formulas [5] is difficult and lacks sufficient accuracy. We 
have therefore found it necessary to determine the temperature at the surface of the film and the temperature profile with 
respect to its thickness by a calculation. 

For the silicon films under consideration (which were of  thickness 8 ~ 350 gm with the absorption coefficient 

k ~ 104 cm -1 [5]) one can use the assumption of optically infinitely thick plane layer, since the absorption of radiation 
takes place in the thickness of several microns. In this case, the layer which is transparent to the radiation contains pre- 
dominantly the direct light flux, and the secondary scattering effects can be neglected due to their low orders [6]. The 
problem of finding the temperature fields during light irradiation of semiconducting films is then described by a nonlinear 
differential equation of the same type as the heat-conduction equation, with an internal heat source which is due to the 
absorption of infrared radiation in the layer. 

In dimensionless coordinates, the equation can be written as 

c)(-)(~, Fo) ._  0~(9(~, Fo) + K i B u e x p ( - - B u ~ )  (l)  
a Fo a[ 2 

with the initial condition 

and the boundary conditions 
o (~, o) = Oo (~) (2) 

c?O(0, Fo) _ Bi[O(0, F o ) - - I I ,  (3) 
a~ 

00(1, Fo) _ Bi[O(1, Fo ) - -  11. (4) 
a~ 

Here we assumed that the light pulse has a rectangular temporal form and the spatial distribution of the incident radiation 

is uniform. 

In general, the coefficients a m ,  X, C~m, k in the dimensionless criterium are variable quantities but, for simplicity of 

calculation, we use constant values of the coefficients taken from [1, 7]. 

The solution of the problem (1)-(4) will be sought in the rectangle 17= { 0 ~  1; 0 ~.~ Fo .~. Fo*} by the mesh method 

[8]. I n I I w e  consider the mesh of nodes C0h,={E~=ih, h > 0 ,  i = 0 ,  1, . . . ,  N; N i t =  1; F o ~ ] ' ~ ,  T > 0 ,  ]==0, 

1, . . . ,  M; Mr = Fo*} , and on this mesh we construct the following implicit difference scheme: 
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Yt = [_/Tx q- Ki Bu exp (--Bu ~), (5) 

~,(~, 0)=u~0,  i = 0 ,  1, . . . ,  N, (6) 

=Bi ( ;0 -  1), N = - B i  - 1) ,  ( 7 )  

where y = Yij = Oij is the approximate value of  O in point  ~ = }~, Fa = Foj; z) = y~:+: Yt = (~ - -g ) / r ;  ~=(Y~+I ,/+~-- 

Y~,:+1)/h; Yr=(Yi , i+ t - -Y i_ i , i+ l ) /h ;  [-/;x = ( [2 ,~y~) /h .  The difference scheme (5)-(7) approximates the original problem 

(1)-(4) with error O(r  + h) and is absolutely stable. In addition, the rate of  convergence of this algorithm coincides with 

the order of  the error of  the approximation. 

Let us suppose that for Fo  = Foj,  the solution has been determined. To find the solution for Fo  = F o >  ~, we then 

obtain from (5)-(7) a system of  N + 1 linear algebraic equations 

T, * ( 2 1 : @  ) ~ ^ 
ha ~ 'g - - t - - \ / - -~  1 ~ i 4 - - - g i _  1 = - - [ t ] , - i - , K i B u e x p ( - - B u ~ ) ]  i = l ,  2 . . . . .  N - - I ,  

' ' he " (8) 

y l - - g 0 =  h B i ( s  ~jN--~A:__ 1 = - - h B i @ N - - 1  ) 

with respect to N + 1 unknowns //o, /.]1 . . . . .  )N" For  the realization of the difference scheme (8), we shall use a three- 

point  difference driving method. To this end, we introduce the following notation: a = "c/h z, c = 2,/[:-}-1, F: = tj~-}- 

�9 K i B u e x p ( - B a ~ ) ,  • = (1 + h B i ) %  v hBi•  The system (8) is then transformed to 

7 -  at .{ l i+ 1 = - -  . . . ,  

~o = • @ ~, YN =• + ~'" 

The solution of  (9) will be sought in the form 

N - - l ;  
(9) 

Yi = g i , l ~ l - ! -  ~i+l, i = 0, 1, . . . ,  N-- 1, (10) 

where, following the difference driving method,  Oti+ 1 and/3i+ 1 are determined from the relations ~zi+~=a/(c-  a%), f~i+l= 

(a~3i-yFi)/(ci--aoq), i = 1 ,  2 . . . .  , N - - l ,  % _ x, [31 = v,, and PN is obtained by using the second boundary condition: 

~,v = (v + x,~v)i(1 - -  •  

Knowing g~§ ~+: and YN' all ~i(i = N - 1, N - 2 . . . . .  1, 0) can be determined recurrently from relation (10). 

For  Bi > 0, the algorithms of the driving method is stable. 

Control calculations of the problem (1)-(4) using the difference scheme (5)-(7) were carried out for h = 10 -3 (step r 

can be arbitrary). The computat ion time t c then obeys the law t c = bM (min), where b = 0.04 for the Minsk-32 computer.  

For  example, the computat ion time of  the problem in II for F o  = 8.8, and r = 0.1 was 3.52 min. 

We note that the problem of optical annealing of  f i l l s  in the present formulation allows an analytical solution [9]. 
However, to obtain the numerical value of  the solution from the analytic form is more complicated since the program for 
the realization of the algorithm becomes more complicated. The algorithm presented here is universal and can be used for 
the solution of  more complicated problems with other heat sources and nonlinear boundary conditions. 

The calculation of the temperature profiles with respect to the depth of  the silicon film during its illumination by 
light pulses was carried out  using parameters given in Table 1. 

Figure 1 shows the calculated temperature profiles for two energy values. It is seen that when the duration of the 
light pulse is decreased from 14 to 8 msec with W = 80 J/cm 2, the temperature on the surface of  the sample increases from 
1224 to 1605~ and the temperature drop across the thickness of the sample also increases, from 96 to 167~ For  W = 

100 J/cm 2, the temperature on the surface of  the film increases from 1470 to 1954"C when the pulse duration is decreased. 

The temperature drop here increases from 123 to 217~ 

The agreement of  the presented mathematical  model  and the real annealing process in silicon films was tested experi- 
mentally by observing the beginning of melting of  silicon on the illuminated side (T m = 1412~ and the melting of  copper 

films (T m = 1083~ and aluminum films (Tm = 658~ on the reverse side. The thickness of  the copper and aluminum 

films was 0.5-1 lam, and one can therefore neglect the effect of  the film on the temperature field in the silicon film. In the 

103 3 



TABLE 1. Parameters of the Energetic Interaction during a Pulsed Anneal 
of Silicon Films 

W,j/ern 2 60 1 80 100 120 

t*.a03, sec 14 8 , 10 I 12 14 8 10, 12 14 8 10 12 
qf:.10-~,W/em 2 4,3 10 ] [ 8  6,65 5,7 12,5 10 I 8,35 7,15 15 12 i0 

//000 lOO 2OO YOO d i30aO ioo zoo mo ci 

Fig. 1. Comparison of the temperature profiles with 
respect to the thickness of the silicon film for various 
durations of the light pulses with energy W = 80 J/cm ~ 
(a) and W = 100 J/cm2(b). 1) t* = 8; 2) 10; 3) 12; 
4) 14 msec. The temperature T is in ~ and d is in/~m. 
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Fig. 2. Comparison of theoretical values of the tempera- 
ture on the illuminated (a) and reverse (b) surfaces of 
the silicon film. 1) t* = 10; 2) 12; 3) 14"msec; 4) 
temperature of melting silicon; 5, 6) temperature of 
melting aluminum and copper, respectively. 

experiment, we used silicon fil ls of diameter 60 mm and thickness 6 ~ 350/~m. The anneal was done by three pulsed 
lamps of type IFP-8000 with pulse duration 8-14 msec. The energy of the light pulse depended on the annealing impurity, 
dose, and the implanting energy and was specified by charging condenser batteries up to appropriate voltage (in the limits 

2.2-4.1 kV). 

Figure 2 shows the theoretical dependence of the temperature on the illuminated and reverse sides of the silicon film, 
on the incident energy density. Shown are the obtained experimental points which characterize the beginning of melting of 
the differential materials. It was established in the experiment that, for a light pulse of duration 14 msec, silicon begins to 
melt at incident energy W = 94, copper at 74, and aluminum at 35 J/cm 2. Figure 2 shows a good agreement of the experi- 
mental and theoretical data. 

Thus, the developed method for the calculation of temperature fields in semiconducting films can be used to analyze 
the regimes of pulsed optical anneal of ion-implanted layers. 
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NOTATION 

am, thermal diffusivity; A, silicon absorptivity; k, a m, and X, absorption, heat exchange, and thermal conductivity 

coefficients; 5, thickness of the silicon film; qf, heat flux density; t*, duration of the light pulse; W, pulse energy; | = 

T(x, 0 /T 0, dimensionless temperature; ~ = x/6, dimensionless coordinate; h and r, space and time steps; Bi = C~mS/X, Biot 

number; Ki = AqdS/k T o, Kirpichev number; Bu = k~, Bouger number; and Fo = amt/62 , Fourier number. 
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NUMERICAL METHOD FOR SOLVING THE COUPLED 

PROBLEM OF RADIATIVE-  CONVECTIVE AND 

CONDUCTIVE HEAT TRANSFER 

Yu. K. Malikov, V. G. Lisienko, and V. V. Volkov UDC 669.046:536.24.001.57 

The solution of the problem of complex heat transfer is reduced to a systematic solution of a system of non- 
linear equations and the heat-conduction equations. A rapid iterative method is proposed for solving the 
system of equations. 

The problem of heating and cooling of a system of bodies with a complex shape under conditions of radiat ion- 
convection heat transfer has not been adequately studied. The case when the bodies are heated in a regular regime was 
examined in [ 1 ]. For nonstationary processes, this assumption is not satisfied. 

We shall examine a radiating volume V, surrounded by a system of opaque bodies. The surface F of the volume V 
consists of the surfaces of the bodies and of "liquid" boundaries, through which the heat carrier enters and leaves the 
volume. We shall view the latter as fictitious surfaces, allowing gas to pass freely through them. These surfaces are assigned 
a certain temperature (or flux density of the resulting radiation), as well as an effective emissivity. This artificial technique 
is used quite frequently [2] to close the emitting system in examining radiative transfer and permits the gas flow to leave 
the system at the same time. 

We shall divide the volume V and the bounding surface F into N zones. For each zone n, we shall write the law 
of conservation of energy in the form 

~ad,~ =--QT~, n =  l,  2 . . . .  , N. (1) 

The radiant energy transport is approximated using the resolvent method by a system of algebraic equations 
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